一种基于深度学习的人体姿态识别方法

一种基于深度学习的人体姿态识别方法

技术类型 : 专利

专利所属地 :中国

公开号 :CN201811177283.1

技术成熟度 :正在研发

转让方式 :技术转让

交易价格:面议

应用领域 : 通用仪器仪表制造

技术领域 :生物与新医药

联系咨询
成果概况
简介
本发明公开一种基于深度学习的人体姿势识别方法,主要解决当前姿势识别技术计算量大,准确度不高的问题。该方法首先用Kinect#V2.0深度传感器采集多个人体样本的动作姿态特征;保存其人体动作姿势的RGB数据和骨骼数据;把骨骼数据经过图像预处理后得到骨骼图像作为训练集与测试集;将训练集输入一种基于卷积神经网络(CNN)的专用于人体姿态识别领域的Posture#CNN中,经过训练、测试调整网络结构和网络参数后得到分类结果;并将不同人体样本的动作姿态特征作为测试集输入分类网络,输出概率最大的动作即为识别结果。本发明使用卷积神经网络提高了识别准确率,降低了识别时间、运行成本低、方法简便可以应用在智能家居、安全监控、运动分析等场所。
专利基本信息
专利名称 一种基于深度学习的人体姿态识别方法
专利状态 实审 公开号 CN201811177283.1
申请号 CN109086754A 专利申请日期 2018-10-11
专利授权日期 0001-01-01 专利权届满日 -
专利所属地 中国 专利类型 实用新型
发明人 天津科技大学
权利人 林丽媛,刘冠军,周卫斌,尹宏轶,陈静瑜,周圆,刘建虎,申川
专利摘要 本发明公开一种基于深度学习的人体姿势识别方法,主要解决当前姿势识别技术计算量大,准确度不高的问题。该方法首先用Kinect#V2.0深度传感器采集多个人体样本的动作姿态特征;保存其人体动作姿势的RGB数据和骨骼数据;把骨骼数据经过图像预处理后得到骨骼图像作为训练集与测试集;将训练集输入一种基于卷积神经网络(CNN)的专用于人体姿态识别领域的Posture#CNN中,经过训练、测试调整网络结构和网络参数后得到分类结果;并将不同人体样本的动作姿态特征作为测试集输入分类网络,输出概率最大的动作即为识别结果。本发明使用卷积神经网络提高了识别准确率,降低了识别时间、运行成本低、方法简便可以应用在智能家居、安全监控、运动分析等场所。